Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668296

RESUMO

Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.

2.
Front Vet Sci ; 11: 1351596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628942

RESUMO

African swine fever (ASF) is a highly contagious and lethal viral disease that causes severe hemorrhagic fever in pigs. It keeps spreading around the world, posing a severe socioeconomic risk and endangering biodiversity and domestic food security. ASF first outbroke in China in 2018, and has spread to most provinces nationwide. Genotypes I and II ASF virus (ASFV) as the etiological pathogens have been found in China. In this study, three pairs of specific primers and probes targeting the ASFV B646L gene, F1055L gene, and E183L gene were designed to detect universal, genotype I, and genotype II strains, respectively. A triplex crystal digital PCR (cdPCR) was established on the basis of optimizing various reaction conditions. The assay demonstrated remarkably sensitive with low limits of detection (LODs) of 5.120, 4.218, 4.588 copies/reaction for B646L, F1055L, and E183L gene, respectively; excellent repeatability with 1.24-2.01% intra-assay coefficients of variation (CVs) and 1.32-2.53% inter-assay CVs; good specificity for only detection of genotypes I and II ASFV, without cross-reactivity with PCV2, PRV, SIV, PRRSV, PEDV, FMDV, and CSFV. The triplex cdPCR was used to test 1,275 clinical samples from Guangxi province of China, and the positivity rates were 5.05, 3.22, and 1.02% for genotype I, genotype II, and co-infection of genotypes I and II, respectively. These 1,275 clinical samples were also detected using a reported reference triplex real-time quantitative PCR (qPCR), and the agreements of detection results between these two methods were more than 98.98%. In conclusion, the developed triplex cdPCR could be used as a rapid, sensitive, and accurate method to detect and differentiate genotypes I and II strains of ASFV.

3.
Front Vet Sci ; 10: 1278714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929278

RESUMO

African swine fever virus (ASFV) was first identified in 1921 and is extensively prevalent around the world nowadays, which has a significant negative impact on the swine industry. In China, genotype II ASFV was first discovered in 2018, and has spread quickly to different provinces in a very short time; genotype I ASFV was first found in 2020, and has been reported in several provinces since then. To establish an accurate method for detection and differentiation of genotypes I and II ASFV, three primers and probes were designed targeting the ASFV B646L gene for different genotypes, the F1055L gene for genotype I, and the E183L gene for genotype II, and a triplex real-time quantitative PCR (qPCR) for differential detection of genotypes I and II ASFV was developed after optimizing the reaction conditions. The assay showed high sensitivity, and the limits of detection (LOD) of the B646L, F1055L, and E183L genes were 399.647 copies/reaction, 374.409 copies/reaction, and 355.083 copies/reaction, respectively; the coefficients of variation (CVs) of the intra-assay and the inter-assay were 0.22-1.88% and 0.16-1.68%, respectively, showing that this method had good repeatability; the assay could detect only ASFV, without cross-reactivity with other swine viruses including PRRSV, PEDV, PDCoV, CSFV, PRV, and PCV2, showing excellent specificity of this method. A total of 3,519 clinical samples from Guangxi province, southern China, were tested by the developed assay, and 8.16% (287/3,519) samples were found to be positive for ASFV, of which 0.17% (6/3,519) samples were positive for genotype I, 7.19% (253/3,519) samples for genotype II, and 0.80% (28/3,519) samples for genotypes I and II. At the same time, these clinical samples were also tested by a previously reported multiplex qPCR, and the agreement between these two methods was more than 99.94%. In summary, the developed triplex qPCR provided a fast, specific and accurate method for detection and differentiation of genotypes I and II ASFV.

4.
Pathogens ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37764900

RESUMO

African swine fever (ASF) is a severe and highly contagious viral disease that affects domestic pigs and wild boars, characterized by a high fever and internal bleeding. The disease is caused by African swine fever virus (ASFV), which is prevalent worldwide and has led to significant economic losses in the global pig industry. In this study, three pairs of specific primers and TaqMan probes were designed for the ASFV B646L, MGF505-2R and I177L genes. After optimizing the reaction conditions of the annealing temperature, primer concentration and probe concentration, triplex crystal digital PCR (cdPCR) and triplex real-time quantitative PCR (qPCR) were developed for the detection and differentiation of the wild-type ASFV strain and the MGF505-2R and/or I177L gene-deleted ASFV strains. The results indicate that both triplex cdPCR and triplex qPCR were highly specific, sensitive and repeatable. The assays could detect only the B646L, MGF505-2R and I177L genes, without cross-reaction with other swine viruses (i.e., PRRSV, CSFV, PCV2, PCV3, PEDV, PDCoV and PRV). The limit of detection (LOD) of triplex cdPCR was 12 copies/reaction, and the LOD of triplex qPCR was 500 copies/reaction. The intra-assay and inter-assay coefficients of variation (CVs) for repeatability and reproducibility were less than 2.7% for triplex cdPCR and less than 1.8% for triplex qPCR. A total of 1510 clinical tissue samples were tested with both methods, and the positivity rates of ASFV were 14.17% (214/1510) with triplex cdPCR and 12.98% (196/1510) with triplex qPCR, with a coincidence rate of 98.81% between the two methods. The positivity rate for the MGF505-2R gene-deleted ASFV strains was 0.33% (5/1510), and no I177L gene-deleted ASFV strain was found. The results indicate that triplex cdPCR and triplex qPCR developed in this study can provide rapid, sensitive and accurate methods for the detection and differentiation of the ASFV B646L, MGF505-2R and I177L genes.

5.
Animals (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883301

RESUMO

African swine fever virus (ASFV) causes African swine fever (ASF), a devastating hemorrhagic disease of domestic pigs and wild boars. Currently, the MGF505R, EP402R (CD2v) and I177L gene-deleted ASFV strains were confirmed to be the ideal vaccine candidate strains. To develop an assay for differentiating the wild-type and gene-deleted ASFV strains, four pairs of specific primers and TaqMan probes targeting the ASFV B646L (p72), I177L, MGF505-2R and EP402R (CD2v) genes were designed. A multiplex real-time qPCR assay for the differential detection of the wild-type and gene-deleted ASFV strains was developed after optimizing the reaction conditions, including the annealing temperature, primer concentration and probe concentration. The results showed that the multiplex real-time qPCR assay can specifically test the ASFV B646L (p72), I177L, MGF505-2R and EP402R (CD2v) genes with a limit of detection (LOD) of 32.1 copies/µL for the B646L (p72) gene, and 3.21 copies/µL for the I177L, MGF505-2R and EP402R (CD2v) genes. However, the assay cannot test for the classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine circovirus type 2 (PCV2), PCV3 and pseudorabies virus (PRV). The assay demonstrated good repeatability and reproducibility with coefficients of variation (CV) less than 1.56% for both the intra- and inter-assay. The assay was used to test 4239 clinical samples, and the results showed that 12.60% (534/4239) samples were positive for ASFV, of which 10 samples lacked the EP402R gene, 6 samples lacked the MGF505-2R gene and 14 samples lacked the EP402R and MGF505-2R genes. The results indicated that the multiplex real-time qPCR developed in this study can provide a rapid, sensitive and specific diagnostic tool for the differential detection of the ASFV B646L, I177L, MGF505-2R and EP402R genes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30746517

RESUMO

We report the complete genome sequence of an atypical porcine pestivirus (APPV) strain named GX01-2018 that was isolated in Guangxi Province, China, from a suckling piglet showing congenital tremor. The whole genome consisted of 11,565 bp and shared 83.4% to 98.2% nucleotide identities and 91.9% to 99.1% amino acid identities with other APPV strains from different countries.

7.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23405301

RESUMO

The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) isolates have showed accelerating evolution under the great immune pressure in China in recent years. Here, we report the complete genome sequence of the HP-PRRSV variant GX1001 isolated from a vaccinated backyard piglet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA